
Zero Copy Rx with io_uring
Pavel Begunkov and David Wei



01 Problem Statement



Linux networking Rx 
overheads
● Memory bandwidth bottlenecks
● Memcpy CPU overheads

01 PROBLEM STATEMENT

Image credit: A Farshin, A Roozbeh, G Q Maguire Jr., D Kostić.
Reexamining Direct Cache Access to Optimize I/O Intensive 
Applications for Multi-hundred-gigabit Networks.



Kernel bypass

01 PROBLEM STATEMENT

● High throughput! Low latency!
● Libraries and applications expect kernel TCP/IP stack
● Re-architecting an entire system around kernel bypass is expensive



● Hybrid solution
○ Standard control plane using kernel networking stack
○ Fast ZC Rx data plane using io_uring

01 PROBLEM STATEMENT

Proposal



02 io_uring Primer



02 IO_URING PRIMER

io_uring

● Ring buffers are not new… Similar to what we know and love!
● Userspace submit requests into Submission Queue (SQ)
● Kernel posts completions into Completion Queue (CQ)

Image credit: 
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4



02 IO_URING PRIMER

struct io_uring_sqe *sqe;

sqe = io_uring_get_sqe(ring);

io_uring_prep_recv(sqe, sockfd, buf, len, flags);

Note this already moves the SQ tail

Prepare request

Image credit: 
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4



io_uring_submit_and_wait(ring, nr_completions);

02 IO_URING PRIMER

Submit

Image credit: 
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4



02 IO_URING PRIMER

unsigned head;

int count = 0;

io_uring_for_each_cqe(ring, head, cqe) {
// do stuff
count++;

}

io_uring_cq_advance(ring, count);

Process completions

Image credit: 
https://medium.com/nttlabs/rust-async-with-io-uring-db3fa264
2dd4



03 Design



03 DESIGN

● Register userspace memory with io_uring
● Pin pages
● struct bio_vec bvec[]

Buffer management



03 DESIGN

● ZC page pool “inspired” by page pool
● Thin shim layer + driver changes

Buffer management



03 DESIGN

● End result: hardware Rx queue filled with userspace pages

Buffer management



● Only want payload
● Header splitting
● Only want our specific application flows 

to hit our ZC hardware Rx queues
● Flow steering
● RSS

03 DESIGN

Header splitting +
flow steering



03 DESIGN

● Hardware side fully set up
● Hard IRQs
● NAPI poll
● Construct sk_buffs

○ Marked as ZC Rx
○ Page frags → userspace pages

● Goes through networking stack

Kernel network stack



03 DESIGN

● Submit ZC receive request to io_uring

Userspace:
control plane



03 DESIGN

Userspace:
control plane
● Handle ZC receive request
● Read sk_buffs from socket
● No copy - payload already in userspace
● Post one ZC Rx queue entry per skb page frag

struct io_uring_rbuf_cqe {
u32 off;
u32 len;
u16 region;
u8 sock;
u8 flags;

}



03 DESIGN

● Post completion event into CQ
● Tells userspace to go look at which ZC Rx queue

Userspace:
control plane



03 DESIGN

● Look at a ZC Rx queue
● Each entry tells user where the payload is relative to the registered 

memory region

struct io_uring_rbuf_cqe {
u32 off;
u32 len;
u16 region;
u8 sock;
u8 flags;

}

Userspace:
data plane



03 DESIGN

● Return buffers to ZC page pool via refill queue
● Eventually used by NIC driver to refill hardware Rx queue

struct io_uring_rbuf_rqe {
u32 off;
u32 len;
u16 region;

}

Userspace:
data plane



04 Preliminary Results



Broadcom BCM57504 NIC @ 25 Gbps link

62 GB DRAM

iperf3 + io_uring + ZC Rx

AMD EPYC 7D13

iperf3

uProf

MemBW

04 PRELIMINARY RESULTS



Broadcom BCM57504 NIC @ 25 Gbps link

62 GB DRAM

iperf3 + io_uring + ZC Rx

Intel Xeon Platinum 8321HC

iperf3

pcm-memory

DDIO is off

MemBW

04 PRELIMINARY RESULTS



05 Questions?





06 Discussion



Handling errors
• How much to allocate ahead of time?

• What if it runs out?

• What if header splitting fails?

﹘ Split too little - header malformed

﹘ Split too much - payload included

• What if flow steering fails?

﹘ ZC Rx packet ends up in non-ZC Rx queue

﹘ Non-ZC Rx packet ends up in ZC Rx queue

06 DISCUSSION



Copy fallback
• What if we run out of userspace memory allocated for ZC Rx?

• Fill HW Rx queue with kernel pages - as before

• When io_uring ZC receive finds sk_buffs with page frags that are not ZC pages, copy into a page from refill queue

• Turn OFF ZC Rx! Then tell application

• Application must fix the problem then kick ZC Rx back on

06 DISCUSSION



Integrating ZC Rx well
• NIC → userspace memory is only one hop in a long end to end pipeline

• What if data needs to be modified after ZC Rx? Another copy…

• API need to expose fine control over the placement of data to satisfy constraints e.g. alignment

﹘ Hardware also needs to support this too

• TLS and kTLS?

06 DISCUSSION


